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Abstract

The intermittency of EN(x, g) = exp[g|SN(x)|2] as N → +∞ is investigated
on a d-dimensional torus �, when SN(x) is a finite Steinhaus series of (2N +1)d

terms normalized to 〈|SN(x)|2〉 = 1. Assuming ergodicity of EN(x, g) as
N → +∞ in the domain g < 1, where limN→+∞〈EN(g)〉 exists, transition
to intermittency is proved as g increases past the threshold gth = 1. This
transition goes together with a transition from (assumed) ergodicity at g < gth

to a regime where limN→+∞[|�|〈EN(g)〉]−1
∫
�
EN(x, g) ddx = 0 at g > gth.

In this asymptotic sense one can say that ergodicity is lost as g increases past
the value g = 1.

PACS numbers: 05.40.−a, 02.50.Ey, 05.10.Gg

1. Introduction

This paper is the first of a series devoted to studying intermittency of the solution to the random
PDE: ⎧⎨

⎩
∂tEN(x, t) − i

2m
�EN(x, t) = λ|SN(x, t)|2EN(x, t),

t � 0, x ∈ � ⊂ R
d , and EN(x, 0) = 1,

(1)

as N → +∞, where SN(x, t) is a sum of (2N + 1)d modes with i.i.d. random phases. Here
λ > 0 is the coupling constant and m �= 0 is a complex mass with Im(m) � 0.

For Im(m) = 0 and Re(m) �= 0, (1) models the scattering of an incoherent laser by an
optically active medium. In this context, a simpler version in which SN(x, t) is approximated
by a Gaussian random field was first considered by Akhmanov et al in nonlinear optics
[1], and by Rose and DuBois in laser–plasma interaction [2]. The latter investigated the
divergence of the average solution to (1) heuristically and numerically. The same problem
was analyzed from a more rigorous mathematical point of view in [3–5]. Going beyond the
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Gaussian approximation requires further specification of SN(x, t). In realistic models laser
light is represented by a superposition of a finite number of monochromatic beamlets with i.i.d.
random phases [6]. The class of SN(x, t) considered in (1) is a straightforward generalization
of those models. For every N < +∞, SN(x, t) is bounded and according to [5] there is no
divergence of the average of EN(x, t). To get interesting results from [5] one needs to work
out the N → +∞ limit of their theory. A possible alternative approach is suggested in the
introduction of [3]. It is explained there that the divergence of the average solution to (1)
indicates a change in the nature of EN(x, t) which undergoes a transition to intermittency.
Taking it the other way round leads us to characterize EN(x, t) by its intermittency; the
divergence of its average takes a back seat. That is the approach followed in this work. Note
that the problem (1) is complementary to that considered in [5] in which N is fixed and SN(x, t)

is a sum of N independent Gaussian random variables. By the central limit theorem, the results
of [5] are expected to coincide with those of the present work in the limit N → +∞.

For a given t > 0, EN(x, t) is said to be intermittent if, for every integer p � 1, the space
average of |EN(x, t)|p is almost surely determined by higher and higher and more and more
widely spaced peaks of |EN(x, t)| as N → +∞. Intermittency of EN(x, t) can be inferred
from the almost sure chain of strong inequalities [7]:

1 	 1

|�|
∫

�

|EN(x, t)| ddx 	 · · · 	
[

1

|�|
∫

�

|EN(x, t)|p ddx

]1/p

	 · · · , (2)

where f (N) 	 g(N) means lim infN→+∞ g(N)/f (N) = +∞. To prove that (2) does provide
a sufficient condition for intermittency, choose for every realization for which (2) is fulfilled
a sequence {fp(N)} such that

1 	 f0(N) 	 1

|�|
∫

�

|EN(x, t)| ddx, (3)

and, for every integer p � 1,[
1

|�|
∫

�

|EN(x, t)|p ddx

]1/p

	 fp(N) 	
[

1

|�|
∫

�

|EN(x, t)|p+1 ddx

]1/(p+1)

. (4)

From (3) and (4) it follows that, ∀p � 1,

1

|�|
∫

�

|EN(x, t)|p1|EN (x,t)|�fp−1(N) ddx � fp−1(N)p 	 1

|�|
∫

�

|EN(x, t)|p ddx,

hence
1

|�|
∫

�

|EN(x, t)|p ddx ∼ 1

|�|
∫

�

|EN(x, t)|p1|EN (x,t)|>fp−1(N) ddx, (5)

almost surely as N → +∞. Equation (5) means that when N → +∞, the space average of
|EN(x, t)|p is almost surely determined by the region of � in which |EN(x, t)| > fp−1(N).
Now, we must prove that this region gets smaller and smaller as N → +∞. This is easily
done for p � 2 as it follows immediately from (4) that

1

|�|
∫

�

1|EN (x,t)|>fp−1(N) ddx � 1

fp−1(N)p−1|�|
∫

�

|EN(x, t)|p−1 ddx → 0, (6)

almost surely as N → +∞. For p = 1 assume that there exists ε > 0 small enough such that
lim supN→+∞ |�|−1

∫
�

|EN(x, t)|ε ddx < +∞ with probability one (this will be the case for
the type of EN considered in this paper). Then

1

|�|
∫

�

1|EN (x,t)|>f0(N) ddx � 1

f0(N)ε|�|
∫

�

|EN(x, t)|ε ddx → 0, (7)

2
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almost surely as N → +∞, which completes the proof that EN(x, t) is intermittent when (2)
holds.

In this paper, we determine the intermittency threshold defined as the smallest value of λ

above which EN(x, t) is intermittent, assuming ergodicity as N → +∞ for λ small enough.
By ergodicity as N → +∞ we mean that if limN→+∞〈|EN |〉 exists, then

lim
N→+∞

1

|�|
∫

�

|EN(x, t)| ddx = lim
N→+∞

〈|EN |〉, (8)

almost surely, where 〈·〉 denotes the average over the realizations of SN . We consider the
simplest case |m| = +∞, i.e. (1) without the �EN term, for a time-independent driver
SN(x, t) ≡ SN(x).

The outline of the paper is as follows. In section 2 we specify our model. Section 3 deals
with the asymptotic behavior of 〈EN(x, t)〉 for large N. Intermittency of EN(x, t) and loss of
ergodicity are investigated in section 4.

2. Model and definitions

We assume that � is a d-dimensional torus of length L and volume |�| = Ld . In the
following we take L = 1 without loss of generality. For any given N ∈ N, let AN =
{n ∈ Z

d : n ∈ [−N,N ]d}, Card AN = (2N + 1)d and assume that SN is of the form

SN(x) = 1

(2N + 1)d/2

∑
n∈AN

exp [i(θn + 2πn · x)] , (9)

where θn are i.i.d. random phases uniformly distributed over [0, 2π [. In the terminology of the
theory of random series of functions, SN is called a Steinhaus (finite) series [8]. The average
over the realizations of θn is denoted by 〈·〉θ , or simply by 〈·〉 if there is no risk of confusion.

In the limit |m| = +∞ and for SN given by (9), the solution to (1) reduces to
EN(x, t) = exp(λt |SN(x)|2). Introducing the average gain factor g ≡ λt〈|SN(x)|2〉 = λt

and using the fact that EN(x, t) is actually a function of x and g only, one is led to study the
intermittency of the field

EN(x, g) = exp[g|SN(x)|2], (10)

as N → +∞. The onset of intermittency will be characterized by the intermittency threshold,
gth, defined by

gth = inf{g > 0 : EN(x, g) is intermittent}. (11)

3. Asymptotic behavior of 〈EN (x, g)〉 for large N

As we will see in the following, the intermittency properties of EN(x, g) depend on the behavior
of 〈EN(x, g)〉 for large N. This behavior is summarized in the following two lemmas.

Lemma 1. If g < 1, then ∀N � 0, 〈EN(x, g)〉 � (1 − g)−1, and

lim
N→+∞

〈EN(x, g)〉 = 1

1 − g
. (12)

Proof. Let h be a complex-valued zero-mean Gaussian random variable with 〈h2〉 = 0 and
〈|h|2〉 = (2N + 1)−d . Write exp[g|SN(x)|2] as

exp[g|SN(x)|2] = 〈
e
√

g(2N+1)d/2[SN (x)h∗+SN (x)∗h]〉
h
. (13)

3
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Let u = |h|2 and define

fg(u) = u − ln I0(2
√

gu), (14)

where I0 is the modified Bessel function of zero order. From (9) and the integral representation
of I0 [9], one gets,

〈EN(x, g)〉 = 〈〈
e
√

g(2N+1)d/2[SN (x)h∗+SN (x)∗h]〉
h

〉
θ

= 〈〈
e
√

g(2N+1)d/2[SN (x)h∗+SN (x)∗h]〉
θ

〉
h

= (2N + 1)d

π

∫ +∞

−∞

∫ +∞

−∞
e−(2N+1)dfg(|h|2) dhr dhi

= (2N + 1)d
∫ +∞

0
e−(2N+1)dfg(u) du. (15)

If g < 1, it follows from (15) and the inequality ln I0(2
√

gu) � gu that 〈EN(x, g)〉 is bounded
above by

〈EN(x, g)〉 � (2N + 1)d
∫ +∞

0
e−(2N+1)d (1−g)u du = 1

1 − g
. (16)

Furthermore, it can easily be checked that fg(u) is minimum at the boundary u = 0 with
fg(0) = 0 and f ′

g(0) = 1 − g > 0. The asymptotic behavior of (15) in the large N limit is
thus determined by the vicinity of u = 0 and one finds

〈EN(x, g)〉 = 1

1 − g

[
1 − O

(
1

Nd

)]
(N → +∞), (17)

hence (12), which completes the proof of lemma 1. �

Lemma 2. If g > 1, then ∃ γg > 0 such that 〈EN(x, g)〉 behaves like (2N + 1)d/2 exp[γg(2N +
1)d ] as N → +∞.

Proof. It can be checked from (14) that if g > 1 there exists a unique number u0 > 0 such that
fg(u) reaches its minimum at u = u0, with fg(u0) < 0, f ′

g(u0) = 0 and f ′′
g (u0) > 0. Write

γg = −fg(u0) > 0. The asymptotic behavior of (15) in the large N limit is now determined
by the vicinity of u = u0, yielding

〈EN(x, g)〉 ∼
√

2π

f ′′
g (u0)

(2N + 1)d/2

[
1 + O

(
1

Nd/2

)]
exp[γg(2N + 1)d ] (N → +∞),

(18)

which completes the proof of lemma 2. �
It follows from (12) and (18) that there is a transition from a regime where

limN→+∞〈EN(x, g)〉 < +∞ to a regime where limN→+∞〈EN(x, g)〉 = +∞ as g increases
past g = 1. The value g = 1 (or, more exactly, λ = 1/t) is the counterpart of what we called
the ‘critical coupling’ in [5].

Note also that 〈EN(x, g)〉 does not depend on x. In the following we will write 〈EN(g)〉
for 〈EN(x, g)〉.

4. Intermittency of EN (x, g) and loss of ergodicity

In this section, we investigate the intermittency of EN(x, g) as N → +∞, assuming ergodicity
for g < 1 where limN→+∞〈EN(g)〉 exists.

4
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Proposition 1. If ∀ g < 1, one has

lim
N→+∞

∫
�

EN(x, g) ddx = lim
N→+∞

〈EN(g)〉 = 1

1 − g
, (19)

almost surely, then ∀ g > 1,

lim
N→+∞

∫
�

EN(x, g) ddx = +∞ (20)

and

lim
N→+∞

1

〈EN(g)〉
∫

�

EN(x, g) ddx = 0, (21)

almost surely.

(For |�| �= 1, the left-hand side of equations (19)–(21) is divided by |�|). Assuming
ergodicity for g < 1 (equation (19)), one finds that

∫
�
EN(x, g) ddx is not asymptotic to

〈EN(g)〉 as N → +∞ if g > 1 (equation (21)). In this asymptotic sense one can say that
ergodicity is lost as g increases past the value g = 1. Note also that (19) ensures that the
assumption we made to prove (7) is fulfilled: use EN(x, g)ε = EN(x, gε) and take ε < 1/g.

Proof. From (10) it follows that for every N � 0 and every realization of the
θn,

∫
�
EN(x, g) ddx is a non-decreasing function of g. Thus, for every g > 1 and ε > 0,∫

�

EN(x, g) ddx �
∫

�

EN(x, 1 − ε) ddx,

and by equation (19),

lim inf
N→+∞

∫
�

EN(x, g) ddx � lim
N→+∞

∫
�

EN(x, 1 − ε) ddx = 1

ε
, (22)

almost surely. Letting ε → 0 yields (20).
We now prove the limit (21). From the control (A.6) with α = 3/4 it follows that for N

large enough, ∫
�

EN(x, g) ddx � exp
[
g sup

x∈�

|SN(x)|2]
< exp[2g(2N + 1)d/2], (23)

almost surely, and by lemma 2,

lim
N→+∞

1

〈EN(g)〉
∫

�

EN(x, g) ddx = 0, (24)

with probability one, which completes the proof of proposition 1. �

Proposition 2 (transition to intermittency). Under the same ergodicity assumption as in
proposition 1, gth = 1.

Proof. First, we prove gth � 1. If EN(x, g) is intermittent, then for every integer p � 1
and almost all the realizations of EN(x, g), there exists fp−1(N), with fp−1(N) → +∞ as
N → +∞, such that∫

�

EN(x, g)p ddx ∼
∫

�

EN(x, g)p1|EN (x,g)|>fp−1(N) ddx, (25)

as N → +∞. From Hölder’s inequality and∫
�

1EN (x,g)>f0(N) ddx � 1

f0(N)

∫
�

EN(x, g) ddx,

5
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one gets, ∀ ε > 0,∫
�

EN(x, g)1EN (x,g)>f0(N) ddx �
[∫

�

EN(x, g)1+ε ddx

] 1
1+ε

[∫
�

1EN (x,g)>f0(N) ddx

] ε
1+ε

=
[∫

�

EN(x, g(1 + ε)) ddx

] 1
1+ε

[∫
�

1EN (x,g)>f0(N) ddx

] ε
1+ε

� 1

f0(N)
ε

1+ε

[∫
�

EN(x, g(1 + ε)) ddx

] 1
1+ε

[∫
�

EN(x, g) ddx

] ε
1+ε

.

(26)

Take g < 1/(1 + ε). By (19), the two brackets on the right-hand side of (26) are almost
surely bounded and

∫
�
EN(x, g)1EN (x,g)>f0(N) ddx → 0 almost surely as N → +∞. This is in

contradiction with (25) for p = 1. Thus, for every g < 1/(1 + ε), EN(x, g) is not intermittent
and by taking ε > 0 arbitrarily small one obtains gth � 1.

We now prove gth � 1. To this end we prove that (2) is fulfilled if g > 1. Using Hölder’s
and Jensen’s inequalities successively, one finds that for every integer p � 1 and ∀ 0 < ε < 1,[∫

�

EN(x, g)p ddx

] 1
p

=
[∫

�

EN(x, g)p(1−ε)EN(x, g)pε ddx

] 1
p

�
[∫

�

EN(x, g)(p+1)(1−ε) ddx

] 1
p+1

[∫
�

EN(x, g)p(p+1)ε ddx

] 1
p(p+1)

=
[∫

�

EN(x, g)(p+1)(1−ε) ddx

] 1
p+1

[∫
�

EN(x, gp(p + 1)ε) ddx

] 1
p(p+1)

�
[∫

�

EN(x, g)p+1 ddx

] 1−ε
p+1

[∫
�

EN(x, gp(p + 1)ε) ddx

] 1
p(p+1)

, (27)

which gives[∫
�

EN(x, g)p+1 ddx

] 1
p+1

[∫
�

EN(x, g)p ddx

]− 1
p

�
[∫

�

EN(x, g)p+1 ddx

] ε
p+1

[∫
�

EN(x, gp(p + 1)ε) ddx

]− 1
p(p+1)

=
[∫

�

EN(x, g(p + 1)) ddx

] ε
p+1

[∫
�

EN(x, gp(p + 1)ε) ddx

]− 1
p(p+1)

. (28)

For every g > 1, take 0 < ε < [gp(p + 1)]−1. By (19) and (20), one has, with probability
one,

lim
N→+∞

∫
�

EN(x, gp(p + 1)ε) ddx < +∞ (29)

and

lim
N→+∞

∫
�

EN(x, g(p + 1)) ddx = +∞. (30)

Injecting (29) and (30) into the right-hand side of (28), one gets[∫
�

EN(x, g)p ddx

] 1
p

	
[∫

�

EN(x, g)p+1 ddx

] 1
p+1

, (31)

almost surely. It remains to prove the first inequality (2), which is immediate by (20). Thus,
(2) is fulfilled and EN(x, g) is intermittent for every g > 1. This implies gth � 1, which
completes the proof of proposition 2. �

6
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5. Summary and perspectives

We have investigated intermittency of EN(x, g) = exp[g|SN(x)|2] as N → +∞, when SN(x)

is given by the Steinhaus series (9). Assuming ergodicity of EN(x, g) as N → +∞ for g < 1,
where limN→+∞〈EN(g)〉 exists, we have proved the existence of a transition to intermittency
as g increases past the threshold gth = 1 (proposition 2). This transition goes together with a
loss of ergodicity in the sense of a transition from (assumed) ergodicity at g < gth to a regime
where limN→+∞[|�|〈EN(g)〉]−1

∫
�
EN(x, g) ddx = 0 at g > gth (proposition 1). Proving

ergodicity of EN(x, g) as N → +∞ for g < 1 is another problem that we are unable to solve
at the present time.

The next step toward a study of the solution to (1) will consist in allowing for a time-
dependent SN in the simpler Laplacian free case (|m| = +∞). What is to be expected in this
setting can be conjectured in view of the results obtained in this paper. Indeed, it is easily
seen that the intermittency threshold of proposition 2 corresponds to the critical coupling
defined as the smallest g at which 〈EN(x, g)〉 would diverge if SN(x) was a Gaussian r.v. with
〈SN(x)〉 = 〈SN(x)2〉 = 0 and 〈|SN(x)|2〉 = 1. Intuitively, this could have been expected from
the CLT according to which, for any fixed x ∈ R

d , (9) tends in law to such a Gaussian r.v. as
N → +∞. Now, if ∀ x ∈ R

d , SN(x, t) tends in law to a Gaussian random function of t as
N → +∞, it is not unreasonable to conjecture that the intermittency threshold for EN(x, t)

should be given by the critical coupling in this case too. Namely, for any given t > 0,

λth(t) = 1

μ1(t)
,

where μ1(t) is the largest eigenvalue of the covariance of SN(x, τ ) for 0 � τ � t . Proving
this conjecture goes through the resolution of specific technical problems inherent in EN(x, t)

being now a functional of SN(x, t). This will be the subject of a forthcoming paper.
We will then be ready to tackle the study of intermittency of the solution to (1) with a

finite m. This more difficult problem will presumably require the use of the distributional
formulation of [5].

Appendix. Controlling the excursion of |SN (x)|
Pave � with d-dimensional cubes, �i , of length � � 1, with �−1 ∈ N and 1 � i � �−d . Let
xi ∈ � denote the center of �i . For every x ∈ �i one gets

||SN(x)|2 − |SN(xi)|2| =
∣∣∣∣∣

∑
n,m∈AN

ei(θn−θm)

(2N + 1)d

(
e2iπ(n−m)·x − e2iπ(n−m)·xi

)∣∣∣∣∣
� 2

(2N + 1)d

∑
n,m∈AN

|sin [π(n − m) · (x − xi)]|

� 2π

(2N + 1)d

∑
n,m∈AN

|n − m||x − xi |.

Since |n − m| � 2N
√

d and |x − xi | � �
√

d one has ∀ x ∈ �i ,

||SN(x)|2 − |SN(xi)|2| � 4πd�N(2N + 1)d . (A.1)

Fix 1/2 < α � 1 and take

�−1 = int(4πd + 1)N(2N + 1)2d(1−α). (A.2)

7
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Then, (A.1) is bounded by

||SN(x)|2 − |SN(xi)|2| � (2N + 1)d(2α−1). (A.3)

Let z ∈ C and write t ≡ |z| and ϕ ≡ Arg(z) − Arg(SN(x)). For every x ∈ �, one has

〈exp[zSN(x)∗ + c.c.]〉 = exp

[
(2N + 1)d ln I0

(
2t

(2N + 1)d/2

)]
and

〈exp[zSN(x)∗ + c.c.]〉 = 〈exp[2t |SN(x)| cos ϕ]〉
�

〈
exp[2t |SN(x)| cos ϕ]1−π/3�ϕ�π/31|SN (x)|�(2N+1)d(α−1/2)

〉
� 1

3 exp[t (2N + 1)d(α−1/2)]P(|SN(x)| � (2N + 1)d(α−1/2)).

Thus,

P(|SN(x)| � (2N + 1)d(α−1/2))

� 3 exp

[
(2N + 1)d ln I0

(
2t

(2N + 1)d/2

)
− t (2N + 1)d(α−1/2)

]
� 3 exp[t2 − t (2N + 1)d(α−1/2)],

where we have used the inequality ln I0(2s) � s2, and by taking t = (2N + 1)d(α−1/2)/2 one
gets

P(|SN(x)| � (2N + 1)d(α−1/2)) � 3 exp

[
−1

4
(2N + 1)d(2α−1)

]
. (A.4)

From (A.3), it follows that if |SN(xi)| < (2N + 1)d(α−1/2) for every i � �−d , then
|SN(x)| <

√
2(2N + 1)d(α−1/2) for every x ∈ �. Therefore, using (A.4),

P
(

sup
x∈�

|SN(x)| �
√

2(2N + 1)d(α−1/2)
)

� P

⎛
⎝�−d⋃

i=1

{|SN(xi)| � (2N + 1)d(α−1/2)}
⎞
⎠

� 3�−d exp

[
−1

4
(2N + 1)d(2α−1)

]
. (A.5)

Now, by (A.2) �−d diverges algebraically in N as N → +∞, and since α > 1/2 the right-hand
side of the last inequality (A.5) tends to zero faster than any power of N as N → +∞. Thus,

+∞∑
N=1

P
(

sup
x∈�

|SN(x)| �
√

2(2N + 1)d(α−1/2)
)

< +∞,

and by the Borel–Cantelli lemma,

P
(

lim sup
N→+∞

sup
x∈�

|SN(x)| <
√

2(2N + 1)d(α−1/2)
) = 1. (A.6)
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